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This paper involves oblique scattering of surface water waves by a bottom standing thin vertical
barrier present in uniform finite depth water. Use of Havelock’s expansion of water wave potential
reduces each problem to two integral equations of the first kind, one on horizontal component of
velocity across the gap and the other on the difference of potentials across the barrier. Single-term
Galerkin technique involving constants as basis functions multiplied by appropriate weight functions
whose forms are dictated by the edge conditions is employed to find approximate solutions of the
two integral equations. This is in contrast to somewhat complicated known functions used earlier
in the literature as basis. Very close upper and lower bounds of the reflection and transmission
coefficients for each configuration are evaluated numerically for various values of the parameters.
Their averages produce very good numerical estimates for these coefficients and these are depicted
graphically against the wavenumber and the incident angle for each barrier.
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1. Introduction

Water wave scattering by obstacles involving floating
and submerged bodies of various geometrical shapes form
an extremely important class of problems in the lin-
earized theory of water waves. When a train of surface
water waves is incidence on an obstacle then it is par-
tially transmitted and partially reflected by the bodies.
Evaluation of the reflection and transmission coefficients
is the most important task for these problems.

Earlier, Dean [1] found the explicit solution for the
problem of water wave scattering by a submerged thin
vertical barrier extending infinitely downwards in deep
water. He used the theory of complex variables to solve
this problem. Shortly afterwards Ursell [2] used Have-
lock’s [3] expansion of water wave potential to solve the
complementary problem of Dean [1] i.e, water wave scat-
tering by a partially immersed thin vertical barrier in
deep water. Williams [4] also solved the partially im-
mersed barrier problem by using reduction technique.
Evans [5] solved the problem of water wave scattering
by a submersed vertical plate. He used the theory of
complex analysis leading to solving a Riemann-Hilbert
problem.

Water wave scattering problems involving bottom
standing thin vertical barriers present in uniform finite
depth water do not possess explicit solutions. However,
a number of approximate methods have been used to
solve these problems in the sense that the reflection and
transmission coefficients were obtained approximately.
For normal incidence, these finite depth problems were
considered by Goswami [6-8] who used an integral
equation formulation based on Green’s integral theorem.
In each case, a perturbation analysis about the explicit

deep water solution was employed by assuming the depth
of water to be large but finite. He concluded that the
effect of finite depth on the reflection and transmission
coefficients are algebraic rather than exponential for
large but finite depth of water. However, the method is
not suitable for moderate depth of water. The surface
piercing barrier problem for finite depth and normal
incidence has been studied by Smith [9] who used
eigenfunction expansions for the velocity potential. He
transformed his problem to an infinite system of linear
equations. But convergence of the solution of the infinite
system is very slow and thus the method is not very
efficient computationally. Later Losada et. al [10] used
eigenfunction expansions for the velocity potential and
reduced the problem to an infinite system of equations
by using the principle of least square. Here also conver-
gence of the method is very slow and as such is not very
attractive computationally. Also, Mandal and Dolai
[11] used single-term Galerkin technique involving the
explicit solutions of the corresponding integral equations
for the case of normal incidence and deep water given
by Ursell [2]. However, these single terms are somewhat
complicated. Here we also used single-term Galerkin
method in the mathematical analysis but the single
terms are simply constants multiplied by appropriate
weight functions, the constants being taken to be unity
and the forms of the weight functions being dictated by
the conditions of the horizontal component of velocity
and difference of potential functions at the edge of a
barrier. By using this method very accurate numerical
estimates for the reflection and transmission coefficients
are obtained. This method appears to be very simple
and straightforward in comparison to the methods
employed by Goswami [6-8], Smith [9], Losada et. al [10]
and Mandal and Dolai [11].

2. Mathematical formulation of the problem:

A train of surface water waves are obliquely incident
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on a thin vertical barrier present in uniform finite depth
water x = 0, y ∈ L from the direction of negative infin-
ity. Here L = (b, h) for the bottom standing submerged
barrier, the y-axis being chosen vertically downwards into
the fluid region through the barrier, the (x, z)-plane is the
position of the undisturbed free surface, h is the uniform
depth of the water. The incident wave train is described
by the velocity potential Re

{
φinc(x, y)eiνz−iσt

}
where

φinc(x, y) =
cosh k0(h− y)

cosh k0h
eiµx. (2.1)

In (2.1), k0 is the unique positive root of the transcen-
dental equation

k tanh kh = K (2.2)

where K = σ2

g , g being the acceleration due to grav-

ity and µ = k0 cosα, ν = k0 sinα, α being the angle
of incidence of the wave train. Due to the geomet-
rical symmetry, z can be eliminated by assuming the
velocity potential of the resulting motion in the form
Re
{
φ(x, y)eiνz−iσt

}
. Then φ(x, y) satisfies the modified

Helmholtz equation with parameter ν in the fluid region

(∇2 − ν2)φ = 0, 0 ≤ y ≤ h, (2.3)

the free surface condition

Kφ+
∂φ

∂y
= 0, on y = 0, (2.4)

the condition on the barrier

∂φ

∂x
= 0, on x = 0, y ∈ L, (2.5)

the edge condition

r
1
2∇φ is bounded as r −→ 0 (2.6)

where r is the distance from a submerged edge of the
barrier,

the bottom condition

∂φ

∂y
= 0 on y = h (2.7)

And the condition as |x| → ∞ given by

φ(x, y)→

 Tφinc(x, y) as x→∞,

φinc(x, y) +Rφinc(−x, y) as x→ −∞,
(2.12)

where T and R denote the transmission and reflection
coefficients respectively.

3. Method of solution

Using Havelock’s [3] expansion of water wave potential,
solution of φ(x, y) satisfying the equation (2.3) and the
conditions (2.4), (2.7), and (2.8) is expressed as
φ(x, y) = Tφinc(x, y) +

∑∞
n=1An cos kn(h− y)e−snx, x > 0,

φinc(x, y) +Rφinc(−x, y) +
∑∞
n=1Bn cos kn(h− y)esnx, x < 0

(3.1)

where sn =
(
k2n + ν2

) 1
2 , ν = k0 sinα and kn(n =

1, 2, 3, ...) are the positive real roots of

K + k tan kh = 0, (3.2)

and the An’s and Bn’s are to be determined.

Let p(y) and q(y) denoted the horizontal component of
velocity and difference of velocity potential respectively
across the plane of the barrier, then

p(y) = 0 on y ∈ L (3.3)

and

q(y) = 0 for y ∈ L = (0, h)− L. (3.4)

Also due to the edge condition (2.6), p(y), q(y) must
have the behaviours

p(y) = O
(
|y − c|−1/2

)
as y → c, (3.5)

q(y) = O
(
|y − c|1/2

)
as y → c, (3.6)

where c = a for L = L1 and c = b for L = L2.

Using the representations (3.1), we find that

p(y) =
∂φ

∂x
(+0, y) =

iµT cosh k0(h− y)

cosh k0h
−
∞∑
n=1

snAn cos kn(h−y)

=
∂φ

∂x
(−0, y) =

iµ(1−R) cosh k0(h− y)

cosh k0h
+

∞∑
n=1

snBn cos kn(h− y), 0 < y < h,

(3.7)
and

q(y) = φ(+0, y)− φ(−0, y)

= (T−R−1)
cos k0(h− y)

cosh k0h
+
∞∑
n=1

sn(An−Bn) cos kn(h−y), 0 < y < h.

(3.8)
By using Havelock’s [3] inversion formula we find from the
relations (3.7) and (3.8) after using (3.3) and (3.4) that

T = 1−R = − 4ik0 cosh k0h

µ(2k0h+ sinh2 k0h)

∫
L

p(y) cosh k0(h− y)dy,

(3.9)
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An = −Bn = − 4kn
sn(2knh+ sin 2knh)

∫
L

p(y) cosh kn(h−y)dy,

(3.10)

R = 1−R = − 2k0 cosh k0h

2k0h+ sinh2 k0h

∫
L

q(y) cosh k0(h− y)dy,

(3.11)
and

An = − 2kn
(2knh+ sin 2knh)

∫
L

q(y) cosh kn(h− y)dy. (3.12)

An integral equation for q(y), y ∈ L, is obtained by using
the equation (3.3) for p(y) in the second of the relations (3.7)
after An is substituted from the relation (3.12). Thus we find

cosh2 k0h

2k0h+ sinh 2k0h

∫
L

q(u)M(y, u)du

=
iµ

2
(1−R)

cosh k0(h− y)

cosh k0h
, y ∈ L, (3.13)

where
M(y, u) =

2k0h+ sinh 2k0h

cosh2 k0h
lim
ε→+0

∞∑
n=1

snkn cos kn(h− y) cos kn(h− u)

2knh+ sin 2knh
e−εkn ,

(3.14)
the exponential term being introduced to ensure the conver-
gence of the series.

Similarly, an integral equation for p(y) is obtained as

cosh2 k0h

2k0h+ sinh 2k0h

∫
L

p(u)N (y, u)du = −R
4

cosh k0(h− y)

cosh k0h
, y ∈ L,

(3.15)
where

N (y, u) =

2k0h+ sinh 2k0h

cosh2 k0h
lim
ε→+0

∞∑
n=1

kn cos kn(h− y) cos kn(h− u)

sn(2knh+ sin 2knh)
e−εkn ,

(3.16)
where y, u ∈ L,the exponential term also being introduced
here to ensure convergence of the series. If we define

G(y) =
2 cosh2 k0h

iµ(1−R)(2k0h+ sinh 2k0h)
q(y), y ∈ L, (3.17)

and

F (y) = − 4 cosh2 k0h

R(2k0h+ sinh 2k0h)
p(y), y ∈ L, (3.18)

then we find that G(y) and (F (y)) satisfy the integral equa-
tions ∫

L

G(y)M(y, u)du =
cosh k0(h− y)

cosh k0h
, y ∈ L, (3.19)

and ∫
L

F (y)N (y, u)du =
cosh k0(h− y)

cosh k0h
, y ∈ L. (3.20)

Again, using the relations (3.17) and (3.18) in the equations
(3.11) and (3.9) respectively, we define∫

L

G(y)
cosh k0(h− y)

cosh k0h
dy =

1

k20C
, (3.21)

and ∫
L

F (y)
cosh k0(h− y)

cosh k0h
dy = C, (3.22)

where

C =
1−R
iR

cosα. (3.23)

It may be noted that C,F (y) and G(y) are real valued
equations which follows by examining the equations (3.19) to
(3.23).

4. Upper and Lower Bounds for C

Following Evans and Morris [12], we define an inner product

< f, g >=

∫
L

f(y)g(y)dy. (4.1)

Then obviously < f(y), g(y) > is symmetric and linear. Also
the operator M defined by

(Mg)(y) =<M(y, u), g(u) > (4.2)

is linear, self-adjoint and positive semi-definite.

We choose a single-term Galerkin approximation for the
solution of the integral equation (3.19) in the form

G(y) ≈ a0q0(y), y ∈ L (4.3)

where a0 is a constant and q0(y) is to be chosen suitably.
Then

a0 =
< q0(y), cosh k0(h−y)

cosh k0h
>

< q0(y), (Mq0)(y) >
. (4.4)

Hence, using the approximation (4.3) for G(y) in the rela-
tion (3.21) and using the same argument as in the Evans and
Morris [12], we find

1

k0C
=< G(y),

cosh k0(h− y)

cosh k0h
>≥< a0q0(y),

cosh k0(h− y)

cosh k0h
> .

(4.5)
Thus we find

C ≤ A (4.6)

where

A =

2k0h+sinh 2k0h
cosh2 k0h

∑∞
n=1

snkn
2knh+sin 2knh

[∫
L
q0(y) cos kn(h− y)dy

]2
k20

[∫
L
q0(y) cosh k0(h−y)

cosh k0h
dy
]2

(4.7)
Thus A can be regarded as an upper bound of the unknown

constant C.

Again, if we define another inner product by

<< f, g >>=

∫
L

f(y)g(y)dy (4.8)

and another operator N by

(Nf)(y) =<< N (y, u), f(u) >>, (4.9)

then it is obvious that << f, g >> is linear, symmetric and
also the operator N is linear, self-adjoint and positive semi-
definite.
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For the solution of the integral equation (3.20), we choose a
one-term Galerkin approximation as

F (y) ≈ b0p0(y), y ∈ L, (4.10)

where b0 is an unknown constant and p0(y) is to be chosen
suitable. Then b0 is found to be

b0 =
<< p0(y), cosh k0(h−y)

cosh k0h
>>

<< p0(y), (Np0)(y) >>
. (4.11)

Hence, using the approximation (4.10) for F (y) in the rela-
tion (3.22) and using the same argument as in the Evans and
Morris [12], we find that

C =

<< F (y),
cosh k0(h− y)

cosh k0h
>>≤<< b0p0(y),

cosh k0(h− y)

cosh k0h
>> .

(4.12)
Thus we find

C ≥ B (4.13)

where

B =[∫
L
p0(y) cosh k0(h−y)

cosh k0h
dy
]2

2k0h+sinh 2k0h
cosh2 k0h

∑∞
n=1

kn
sn(2knh+sin 2knh)

[∫
L
p0(y) cos kn(h− y)dy

]2
(4.14)

Thus upper and lower bounds for the unknown real con-
stant C defined by the relation (3.23) are obtained as A and
B respectively. Hence for the unknown real constant C, we
find

B ≤ C ≤ A. (4.15)

Hence upper and lower bound for |R| and |T |(= |1− R|) are
obtained as

R1 ≤ |R| ≤ R2, T1 ≤ |T | ≤ T2 (4.16)

where

R1 =
cosα

(A2 + cos2 α)
1
2

, R2 =
cosα

(B2 + cos2 α)
1
2

, (4.17)

T1 =
B

(A2 + cos2 α)
1
2

, T2 =
A

(B2 + cos2 α)
1
2

. (4.18)

In the next sections bottom standing submerged barrier is
considered, upper and lower bounds for the reflection and
transmission coefficients are evaluated in each case for the
various values of the different parameters involved.

5. Submerged barrier extending down to the
bottom

Here L = (b, h) so that L = (0, b). This problem was con-
sidered by Mandal and Dolai [11] and Losada et. al [10].
However, Mandal and Dolai [11] used one-term Galerkin ap-
proximation using Ursell’s [2] explicit solution for deep water
and normal incidence while Losada et. al [10] used the prin-
ciple of least square to obtain the reflection and transmission
coefficients numerically. Here we use one-term Galerkin ap-
proximations involving constants multiplied by appropriate
weight functions. For q0(y) and p0(y) we choose

q0(y) =

((y
b

)2
− 1

) 1
2

, b < y < h, (5.1)

and

p0(y) =

(
1−

(y
b

)2)− 1
2

, 0 < y < b, (5.2)

taking the constants as unity as these do not affect A and B
given by (4.7) and (4.14) respectively. These are substituted
in the equations (4.7) and (4.14) to find the values of A and
B and we get

A =

2k0h+sinh 2k0h
cosh2 k0h

∑∞
n=1

snkn
2knh+sin 2knh

[∫ h
b
q0(y) cos kn(h− y)dy

]2
k20

[∫ h
b
q0(y) cosh k0(h−y)

cosh k0h
dy
]2

(5.3)
and

B =[∫ b
0
p0(y) cosh k0(h−y)

cosh k0h
dy
]2

2k0h+sinh 2k0h
cosh2 k0h

∑∞
n=1

kn
sn(2knh+sin 2knh)

[∫ b
0
p0(y) cos kn(h− y)dy

]2 .
(5.4)

The lower and upper bounds for the reflection and
transmission coefficients are now calculated by using the
relations (4.17) and (4.18) (taking L = (b, h)) for various
values of different parameters and the angle of incidence α.

7. Numerical results

From the Table 1, it is seen that R1 and R2 coincide
in most cases upto 2 to 4 decimal places and hence their
averages provide very good accurate numerical estimates for
the reflection coefficient. Similar results have been obtained
for T1 and T2 and their averages provide very accurate
numerical estimates for the transmission coefficient |T |.
However these results are not given here in a tabular form.
It has been checked that these numerical estimates satisfy
the energy identity |R|2 + |T |2 = 1, which provides a partial
check on the correctness of the method. There are also other
checks as described below.

Table 1. Lower and upper bounds for the reflection coeffi-
cient |R| for Kh = 0.2

α = 00 α = 300 α = 600

b/h R1 R2 R1 R2 R1 R2

0.2 0.291453 0.292491 0.255010 0.255545 0.150066 0.150234

0.4 0.139607 0.139685 0.120547 0.121000 0.069814 0.069895

0.6 0.057339 0.0573464 0.049533 0.0496181 0.028515 0.028595

0.8 0.015263 0.0155993 0.013471 0.0135015 0.007772 0.007786
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FIG. 1: |R|, |T | vs k0b for different values of α and b/h = 0.1
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FIG. 2: |R|, |T | vs Kb for different values of α and b/h = 0.01

In figure 1, |R| and |T | are depicted against the wavenum-
ber k0b for different values of α and a/h = 0.1. It is observed
from this figure that for α = 00, the curves of |R| and |T |
coincide with the curves of |R| and |T | in the figure 3 of
Porter and Evans [13] corresponding to b/h = 0.1. From this
figure, it is seen that for fixed b/h = 0.1 and α, the reflection
coefficient |R| first increases and the transmission coefficient
|T | first decreases as k0b increases and then |R| decreases
and |T | increases for further increase of k0b. This is plausible
since for low wavenumbers, the wave potential behaves like a
horizontal flow far from the barrier so that most of the wave
energy is transmitted through the upper part of the sub-
merged barrier and for large k0b, most of the wave energy is
confined near the free surface so that a large proportion of the
wave energy is transmitted. It may be noted that |R| and |T |
decreases and increases respectively monotonically as angle
of incidence increases. In particular, for the grazing incidence
(α ≈ π

2
), |R| and |T | asymptotically becomes zero and unity

respectively which are expected from physical considera-
tion. This will also be apparent from figure 3 in which |R|
and |T | are depicted against α for b/h = 0.1 and different k0b.

In figure 2, |R| and |T | are depicted against wavenum-
ber Kb for b/h = 0.01 and for different α. For α = 00, the
curves of |R| and |T | almost coincide with the curves given
by Dean [1] for the case of a thin vertical barrier submerged
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FIG. 3: |R|, |T | vs α for different values of k0b and b/h = 0.1

in deep water. This is due to the fact that as the water depth
is hundred times the depth of the upper edge of the barrier
below the mean free surface, the water can be assumed to
be deep. It is seen that for fixed angle of incidence α as the
wavenumber Kb increases |R| decreases while |T | increases.
This observation is in contrast with the observation in figure
1 wherein, regarded as function of the wave number k0b, |R|
has a maximum and |T | has a minimum for a particular value
of k0b for each angle of incidence. As mentioned by Porter
and Evans [13], this is due to the fact that total reflection
(|R| → 0) occurs when waves of large wavelengths (k0b → 0)
are incident on a very long submerged barriers (b/h = 0.01).
The effect of |R| and |T | on the angle of incidence α (in
radian) is shown in figure 3 for b/h = 0.1 and different values
of k0b. It is seen that the curves of |R| and |T | coincide with
those in figure 5 of Porter and Evans [13]. It is observed that
|R| decreases and |T | increases as α increases from 00 to 900.
This is plausible since for a fixed wavenumber, maximum
reflection (or minimum transmission) occurs when the waves
are normally incident on the barrier.

8. Conclusion
Problems of water wave scattering by a submerged vertical
barrier extending down to the bottom in uniform finite depth,
have been studied here. Galerkin technique involving con-
stant as basis functions multiplied by appropriate weights
is used to obtain accurate upper and lower bounds for the
reflection and transmission coefficients. This appears to be
simple and straightforward compared to other methods em-
ployed in the literature to solve this class of problems. Numer-
ical values of upper and lower bounds for the reflection and
transmission coefficients coincide within two to three decimal
places. Hence, their averages produce very accurate estimates
for these coefficients. In the limiting case of deep water and
also for uniform finite depth water, graphs of the reflection
and transmission coefficients for a submerged barrier extend-
ing down to the bottom are recovered as spatial cases. This
method can be applied to investigate water wave scattering
problems involving barriers of various other geometrical con-
figurations.
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