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The South West Monsoon rainfall data of the meteorological subdivision containing Nagaland,
Manipur, Mizoram and Tripurais shown to be decomposable into six empirical time series, namely,
intrinsic mode functions. This helps one to identify the first empirical mode as a nonlinear part and
the remaining as the linear part of the data. The nonlinear part is handled by neural network based
Generalized Regression Neural Network based technique whereas the linear part is modeled through
regression technique. It is found that the proposed model explains around 75% of inter annual
variability. The model is efficient in statistical forecasting of rainfall as verified. The statistical
forecast of the subdivision for the year of 2013 is 93.10 cm whereas the actual data is 88.71.

PACS numbers:

I. INTRODUCTION

The summer monsoon or called the southwest monsoon
(SWM) is the substantial component of annual rainfall
in India. The rainfall during June, July, August and
September is the SWM rainfall on a yearly basis. The
economy and agriculture is vastly dependent on SWM
rainfall and its characteristics for different regions of In-
dia As a case study, we undertake the analysis of SWM
rainfall of the subdivision No.6 consisting of the states
Nagaland, Manipur, Mizoram and Tripura (NMMT).
The location of NMMT is presented in Fig. 1.

Efforts are made from earlier times to understand the
connections between SWM and other global phenom-
ena namely El Nino (EN), southern oscillation (SO) and
sunspot cycle. This raises the question whether the quan-
tum of rainfall for the season can be forecast keeping in
view the regularity with which the monsoon season ap-
pears. In the past, this issue has been addressed in two
different ways. In the first approach, rainfall is thought
to be the effect of other antecedent meteorological param-
eters. The works of Gowariker et al. (1989), Thapliyal
(1990), and Sahai et al. (2003) may be mentioned in
this connection. The model of Sahai et al. (2003) linked
global SST data with Indian monsoon seasonal data ap-
pears to be a successful one. In the second approach,
rainfall time series is supposed to carry the images of all
causes in itself. In this connection Sahai et al. (2000),
Iyenger and Raghukant (2003) may be mentioned where
even though causes are not known; but with sufficiently
large data series rainfall is modeled as replicating past
data with the help of Greens function.

Some studies elaborate the periods latent in the data
with the help of Fourier analysis such as Campbel et
al. (1983), Narashima and Kailash (2001), Sukhla and
Paolino (1983). The hidden periodicity such as sunspot
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cycle, QBO, El-Nino is predominant in their study. The
periodicity of 3, 5.8, 11.6, 20.8 etc along with oscillatory
trends are the important features of their studies. How-
ever, transitions of the knowledge to efficiently in the
forecast are not possible. The approach of Iyenger (1991),
Iyenger and Basak (1994) for decomposition of the SWM
rainfall into principal components are also very much rel-
evant for understanding the periodicity of the rainfall.

The present paper studies the forecasting of SWM rain-
fall of NMMT with the above points in the background.
A new representation of the data series, in terms of a
finite number of empirical time series as Intrinsic Mode
Functions (IMFs) is presented. These time series are sim-
pler than the original data for modeling and forecasting.

II. EMPIRICAL MODES

The time series of the SWM rainfall data series is
now decomposed into finite number of empirical mode,
namely, Intrinsic Mode Function (IMF) as per Huang et
al. (1998). An IMF is a data derived function such that,
in its interval of definition the number of zeros and ex-
trema are either equal or differ at most by one. Further,
at any point, the meanvalue of the local positive and
negative envelopes of the IMF would be zero.

Each IMF so obtained is a narrowband time series with
an identifiable central period around which the oscilla-
tions take place. The amplitude and period of IMFs are
hierarchical as the number of IMFs. The amplitude and
period also provide a physical basis, for relating mon-
soon rainfall with other meteorological parameters that
show similar character of periods as a particular IMF.
As a study, the present papers study a North-East sub-
division of Indian rainfall time series and decompose the
observed data into their basic IMFs. The SWM rainfall
series of NMMT the data exhibit six modes of tempo-
ral variation. The last mode always corresponds to the
climatic average remaining almost constant.

The traditional method of investigating rainfall data
has depended on models of stationary random processes
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with Gaussian properties. Application of the correspond-
ing statistical tests to verify the auto-correlation or power
spectral density functions of SWM data leads to the re-
sult that signals, if any, in these data are very weak
(Iyenger 1991). The non-Gaussianness of SWM data
prevents the data to be modeled in terms of a linear
time series. On the other hand, the particular form of
the nonlinear model to be used is not quite obvious.
Previously (Iyengar and Raghukanth, 2003) it has been
demonstrated that a nonlinear model with variable fre-
quency harmonic terms can be effectively used to explain
about 60% of the IAV. This would indicate that the basic
data which is not a white noise should carry the decom-
posed IMFs as signals. The first IMF exhibits highest-
frequency mode and is strongly non-Gaussian. The other
hierarchical IMFs are progressively less random.

TABLE I: SWM rainfall data (18711990).

Region Area(Sq.
km)

mR(cm) ϭR(cm) Skewness Kurtosis

NMMT 255,511
sq. km

125.4 26.4 -0.5670 2.9574

NMMT: Nagaland, Manipur, Mizoram and Tripura

III. RAINFALL DATA

The area rainfall data of NMMT are collected from the
website www.tropmet.res.in of Indian Institute of Tropi-
cal Meteorology (IITM), Pune. The SWM rainfall data
which is the sum of the monthly values of June, July, Au-
gust and Septemberare selected for detailed study. Some
basic statistics of the data such as the climatic normal
(mR) and climatic deviation about the normal (R) are
presented in Table 1.

FIG. 1: Meteorological subdivision of Nagaland, Manipur,
Mizoram and Tripura (NMMT).

IV. INTRINSIC MODE FUNCTIONS

The method of extraction of IMFs is briefly described
below with reference to the data series of NMMT. Follow-
ing Huang et al. (1998), at every time step the average
of the positive (E) and negative (E) envelopes are found.
This average m0(t) which is the bias of the data about the
zero level, is subtracted from the raw data to get R1(t) =
R(t)m0(t). This new time series is further processed as
in the previous step to get R2(t) = R1(t) −m1(t). This
process is repeated m times till the sieved data Rm(t)
is centered symmetrically such that with every zero only
one peak or valley occurs. Such an Rm(t) (uptp 6 in
our case) is the first intrinsic mode denoted as IMF1.
In Fig. 2, IMF1 of the NMMT series is extracted af-
ter six iterations. To extract the second IMF, the first
IMF is subtracted from the original data and the pro-
cess is repeated. On similar lines IMF3, IMF4,, IMF6

are hierarchically extracted until the sieved data shows
no oscillations. A long-term climate trends, center-line
drifts, long period non-stationary features come out as
the sixth IMF. For the time series of Fig. 2-7, six IMFs
of SWM rainfall are presented. It is observed that the
last IMF is invariably positive and is a mode slowly vary-
ing around the long-term average. This may be thought
of as the normal or climatic component about which the
IAV of the monsoon rainfall appears. This IAV itself can
be decomposed into five dynamic modes each evolving
around specific frequency or period.

FIG. 2: First Intrinsic Mode Function (IMF1) of SWM rain-
fall of NMMT.

The contribution of the corresponding IMFs is found
on the basis of time averaging is shown to indicate the
relative contribution of an IMF to the total variability
of the rainfall. It is easily observed that all IMFs ex-
hibit slowly varying amplitudes and frequencies (Fig. 2-
7) indicating a narrow band processes with well-defined
Hilbert transforms. However, even without such a repre-
sentation the dominant period of oscillation can be found
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TABLE II: Central period of the IMF’s in years and % variance contributed.

NMMT: Nagaland, Manipur, Mizoram and Tripura

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5
T IAV% T IAV% T IAV% T IAV% T IAV%

NMMT 2.76 42.22 4.76 18.61
18.4

6
10.23 35-40 3.64 Not detectable 20.56

FIG. 3: Second Intrinsic Mode Function (IMF2) of SWM
rainfall of NMMT

FIG. 4: Third Intrinsic Mode Function (IMF3) of SWM rain-
fall of NMMT.

by counting the zeros and the extrema in an IMF. In Ta-
ble 2, the central period along with the contribution of
each IMF to IAV percentage is listed. It is observed that
IMF1 is a predominant mode with an average period of

FIG. 5: Fourth Intrinsic Mode Function (IMF4) of SWM
rainfall of NMMT.

FIG. 6: Fifth Intrinsic Mode Function (IMF5) of SWM rain-
fall of NMMT.

2.76 years contributing to 42.2% of IAV. IMF2 is second
most important mode with a dominant period of 4.46
years. These two modes are closely connected with the
quasi-biennial oscillation (QBO) and El NioSouthern Os-
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FIG. 7: Sixth Intrinsic Mode Function (IMF6) of SWM rain-
fall of NMMT.

cillation (ENSO) phenomenon. In the same way, IMF3

can be associated with the sunspot cycle of about 12-18
years approximately sunspot cycle (Bhalme and Jadav,
1984). The central period of IMF4 is about 30 years,
which can be related to tidal forcing (Campbell et al.,
1983). The fifth IMF shows an elongated period of the
order of 60 year last component, which is the residue,
as per Huang et al. (1998), is here taken as the slowly
varying climate mode. This way, IMF6 is here identi-
fied as the deterministic long-term behavior. It may be
mentioned here that wavelet analysis of monsoon rain-
fall data by Narasimha and Kailas (2001) indicated the
presence of six quasi-cycles (modes) at nearly the same
average periods obtained here. The present study has
been able to identify the time histories of the embedded
modes also in the form of various IMFs. The represen-
tation obtained for any of the data series is of the type
R(t) =

∑
IMFi(t). The sum of the IMFs leads to the

original data; the error between the sum of the six IMFs
data series has an average value of 10−4 .

V. IMF STATISTICS

For understanding the statistical relation between the
IMFs and the data, one has to construct the correlation
matrix of the time series. In Table 3, the correlation ma-
trix (6x6) of the NMMT SWM data and the six variable
IMFs is shown. It is understood that correlation values
between the data and the IMF are statistically signifi-
cant and hence are phenomenically meaningful. Further,
among themselves the IMFs are statistically uncorrelated
or orthogonal. Thus, we can expect the sum of the vari-
ances of the IMFs to be nearly equal to the total vari-
ance of the data. However, due to sample size effects
and round off errors there can be small differences be-
tween the two-variance figures. For example, the sum of

the variances of the IMFs of NMMT adds up to 70.5,
whereas the data variance is 71.7.

TABLE III: Correlation matrix of IMFs and Data SWM rain-
fall NMMT.

*Significant at 5%.

Data IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Data 1.0000 0.8019* 0.1177 0.250* 0.1678* 0.1910 0.1011

IMF1 1.0000 0.1365 -0.0244 0.0055 -0.0086 -0.0264

IMF2 1.0000 -0.1688 0.0192 0.0060 0.0133

IMF3 1.0000 -0.0123 0.2101 -0.1341

IMF4 1.0000 0.1081 -0.0113

IMF5 1.0000 0.1812

IMF6 1.0000

VI. FORECASTING STRATEGY

The possibility of statistical forecasting of SWM rain-
fall incorporating the IAV is now converted to IMF series
through the IMFs. The first IMF carries the higher fre-
quency of the information and hence is expected to be
much more random than others. One way of describing
uncertainty in rainfall is through the probability density
function of the data (Iyenger, 1991). It is known that
rainfall, as a random variable is nonGaussian. This is
true of the data studied here (Table 1) even though, be-
ing the sum of several individual variables, the seasonal
data has a tendency towards being Gaussian. Thus, the
signals of the original SWM rainfall series are converted
to the oscillations signal of IMFs.

There is great interest among the agriculture, indus-
trial and policy-making sectors in India to know in ad-
vance how the monsoon in a particular year behaves as
far as rainfall is concerned. Thus, considerable literature
exists on the various strategies adopted by the India Me-
teorology Department (IMD) in producing a long range
forecast for the All India seasonal rainfall (Rajeevan et
al., 2000; Rajeevan, 2001). Forecasting may be seen as
extending the data series by one step. This exercise, for
simple functions with an analytic form can be easily car-
ried out by Talyors series expansion. However, rainfall
data is highly erratic and no simple function can be fit-
ted to the whole data series. Hence, the approaches taken
have been statistical whether explicitly stated to be so or
not. The decomposition of data into IMFs presents an-
other approach for forecasting Indian monsoon rainfall.
It is clear that one can attempt modeling and forecasting
the IMFs.

For accurate forecasting, one has to work with accurate
values of Rjs or IMFs. This difficulty can be overcome
by recognizing that except for the first IMF, others can
be modeled through linear regression on their own past
values. In fact for purposes of forecasting it is found
easier to handle the data Rj as consisting of a nonlinear
part and a linear part. The first IMF1j represents the
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nonlinear part, where as yj = (Rj − IMF1j), (j =1, 2,
3, . . . , n - 1) represents the linear part of the data.
The stationarity of this part has also been verified by
the standard run test on decadal variance value yj asso-
ciated with NMMT, with N = 13, there are seven runs
about the median value of the decadal variance. For the
remaining data, in the order listed in Table 1, the runs
are [6, 7, 8, 8, 5, 6, 8] implying that the variance remains
constant in time and hence stationarity accepted since
the tabulated runs at 5% significance level are between
4 and 11. With this in view, the representation for the
linear part avoiding yn, is chosen as

yn+1 = C1Rn+C2yn−1+C3yn−2+C4yn−3+C5yn−4+C6

(1)
It is found that the equation (1) provides an excellent

fit for the linear part with the data base. The regression
coefficients are found the series of 1871-1990 the database
The regression coefficients are found from the data series
of 18711990, such that IMF1 and yj are available for the
period 1872 to 1990. The regression coefficients and the
resulting standard deviation of the error σR are presented
in Table 4. In each case, the correlation coefficient (CC)
between the actual data and fitted value as per the above
equation is also presented in the table. In all the cases,
the correlation is highly significant, indicating the appro-
priateness of identifying yj as the linear part of monsoon
rainfall.

The first IMF that accounts for most of IAV of mon-
soon rainfall is non-Gaussian and non-linear process. In
the case unstructured complex problem, the Generalized
Regression Neural Network (GRNN) an improved ver-
sion of Neural Network class of technology based on non-
parametric regression, suggested by (Spect, 2002) is ap-
plied.

VII. GENERALISED REGRESSION
NETWORKS ARCHITECTURE CONNECTED

TO NON LINEAR IMF1

A. ARCHITECTUE OF GRNN

A GRNN model contains two hidden layers, pat-
tern neurons and summation neurons. The calcula-
tions performed in each pattern neuron of GRNN are
exp(−D2

j/2σ
2), Dj being the distance between training

sample and being smoothness parameter, the normal
distribution is considered at each training sample. The
signals of the pattern neuron, going into the Denomi-
nator neuron are weighted with corresponding values of
the training samples Yj . The weights on the signals going
into the Numerator are one. Each sample from the train-
ing data influences every point that is being predicted by
GRNN.

The author (Spect 2002) showed that GRNN works for
modeling and extending regression, prediction, classifica-
tion and function approximation. The idea is that every

training sample will represent mean to a radial basis neu-
ron. After several trials with number of previous values
of IMF1, a GRNN with hidden layer is utilized as shown
in Figure 12.

FIG. 8: General Regression Neural Network with Radial Basis
Functions.

B. RESULTS OF IMF1 WITH GRNN

The computation has been done using MATLAB tool-
box on GRNN algorithms, with 1871-2000 as the training
period. With the help of antecedent IMF1 values, the
GRNN model is capable of predicting IMF1 for the year
(n +1). In Table 5, the standard deviation σy(e) of the
errors is constructed on the training period data is shown
along with the correlation coefficient (CC) between the
actual IMF1 and the GRNN results. It is observed that
GRNN is quite versatile in capturing the latent nonlin-
ear structure evidenced by the high correlation (0.8062)
between the actual and simulated IMF1 values. An ad-
vantage of this approach is that the error in the model
can also be characterized statistically.

VIII. FORECASTING

The successful modeling of IMF1j and yj can be ex-
tended by one year, to make a forecast of the next year
rainfall value. Firstly, for yn+1 and then for IMF1,n+1 is
computed from the models mentioned above. The sum
of the two values produces a forecast for Rn+1. Here,
the performance of the forecast strategy is investigated
by considering for the period (19912013), that was de-
liberately left out of the modeling exercise. The quality
of modeling Rj in the training period (18751990) and
the efficiency of one-step-ahead forecasting in the testing
period (19912013) are presented in Table 6.

The sample forecast is an expected value and may be
slightly deviate from the actual observation. In Table 7,
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TABLE IV: Regression coefficients of Equation (1).

NMMT: Nagaland, Manipur, Mizoram and Tripura

Region C1 C2 C3 C4 C5 C6
ϭ y CC

NMMT 0.05252003 -0.000227877 -0.0109865721 0.0489769 -0.032434821 18.9298859 2.2458 0.766585886

TABLE V: Statistics of GRNN model for IMF: training period
(18712000).

NMMT: Nagaland, Manipur, Mizoram and Tripura

Region Ϭy(e) Correlation Coefficient (CC)
NMMT 2.8545 0.9255

detailed numerical results on the independent forecasts
are presented. Fig. 13 elaborates the actual rainfall data
and predicted rainfall data for testing period (1991-2013).

It is evidenced that the present strategy for forecasting
SWM rainfall one year ahead, works well within certain
limits. It may be noted that the sample and actual data
is 0.89, which is sufficiently high. In verifying the ability
of the model for the forecasting, 19912013, the model pa-
rameters are kept constant all through the thirteen years
there by relaxing the constrains for forecasting exercise,
the model parameter have to be updated, every year be-
fore forecast. It is observed that even under the less than
ideal condition, the forecasts produced by the model are
good enough. For a sample size of N = 23 (1991 - 2013),
the correlation coefficient (CCf) in the test period has to
be at least 0.6 to be taken as significant. It is found from
Table 6 that CCf is well above 0.6.

FIG. 9: The actual SWM rainfall and Predicted SWM rainfall
of NMMT for the testing period (1991-2013).

IX. PERFORMANCE OF THE MODEL

To verify the performance of the model proposed, three
statistical parameters are chosen. The first two are the
Root Mean Square Error (RMSE) and the correlation co-
efficient (CCm) between the given data and the simulated
values out of the model. A statistic called Performance
Parameter [4], namely, PPm = 1(σ2

m)/(σ2
d), where σ2

m is
the mean square error and σ2

d is the actual data variance,
has also been extracted. In a perfect model, m2 will be
zero and both CCm and PPm would tend towards unity.
Table 6 indicates that the efficiency of the present model
is good for testing period and correlation coefficient be-
tween forecasted forecast is an expected value and hence
may not precisely match with the actual observation.

X. DISCUSSION

IAV of monsoon rainfall of NMMT has been investi-
gated in this paper with a valuable perspective and points
out some interesting feature. It is identified that the sea-
sonal SWM rainfall time series of NMMT can be decom-
posed into six statistically almost uncorrelated modes;
the summation of which gives back the original data.
The sixth mode is identified easily associated with the
climatic variation persistent over the total data base.
The remaining five empirical modes (IMFs) are narrow
band random processes, with well defined central peri-
ods, connected to certain well defined meteorological phe-
nomenon. The first IMF which accounts for the highest
variability is strongly nonGaussian and can be success-
fully predicted using GRNN techniques. The remaining
part of the rainfall after removing the first IMF is agree-
able for a linear multiple regressive representation. With
two decided separate representations; a methodology has
been developed to forecast rainfall. However, the analysis
does not account for other variability, namely, intra an-
nual, inter seasonal or intra seasonal variability present
in the monsoon rainfall. The forecast of SWM rainfall
for NMMT for the year 2012 and 2013 are123.18 cm and
93.10 cm respectively corresponding to the actual SWM
rainfall of 100.18 cm 88.71cm, which are within one stan-
dard deviation of mean rainfall. Among the first five
IMFs, it has been seen that first three IMFs contributed
nearly 90% of the variability. It may be interpreted that if
those are simultaneously negative, the chances of drought

AJAMC, Vol 2, Issue 1, 2020

American Journal of Applied Mathematics and Computing

29AJAMC, Vol 1, Issue 2, 2020



7

TABLE VI: Performance of the modeling and forecasting strategy.

NMMT: Nagaland, Manipur, Mizoram and Tripura

Region Modeling period (1872–1990) Forecasting period  (1991–2013)
Ϭm(e) CCm PPm Ϭf(e) CCf PPf

NMMT 3.29 0.89 0.83 3.04 0.91 0.82

TABLE VII: Independent test forecasting.

NMMT: Nagaland, Manipur, Mizoram and Tripura

NMMT
Year Actual(x10)cm Forecast(x10) cm
1991 12.2671 14.9124
1992 10.5481 12.5204

1993 15.1873 19.8251

1994 10.4138 11.8652

1995 14.4094 14.8132

1996 12.0621 12.1012

1997 14.6991 16.0112

1998 11.0602 15.2662

1999 13.1517 13.2021

2000 10.8651 12.0822
2001 13.1962 14.1038

2002 14.7192 15.1280
2003 14.2221 12.9866
2004 17.1950 18.4192
2005 11.8962 12.3821
2006 11.3524 13.0012
2007 14.6562 14.3221
2008 10.2941 12.3802
2009 10.7382 11.2110
2010 11.7873 10.4522
2011 9.7655 11.6122
2012 10.018 12.3182
2013 8.8710 9.3102

are high. For flood like situation those are highly positive
which are in agreement with (Iyenger and Raghukant,
2003).

XI. CONCLUSION

IAV of NMMT has been investigated with an innova-
tive point of view in the current paper. It is established
that SWM rainfall time series, sampled annually, is de-
composed into six statistically orthogonal modes; sum
of the modes gives back original data to an accurate
level. Sixth mode is associated with the overall climatic
variation whilst the remaining five empirical modes are
associated with narrow-band random processes having
specified central periods and are connected to important
meteorological phenomenon parameters. The approach
that that first mode IMF1 accounting for highest variabil-
ity, is strongly non-Gaussian and is modeled by GRNN
technique; whereas the remaining part of the rainfall is
amenable for linear auto-regressive representation is an
interesting approach. The combination of two techniques
amenable to forecasting exercise of the rainfall prediction
is developed for NMMT. The particular approach is gen-
eral enough and efforts are on to include the analysis in
other regions of India.
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