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The work presented in this article constitutes a contribution to modeling and forecasting the
demand in a food company, by using time series approach. Our work demonstrates how the historical
demand data could be utilized to forecast future demand and how these forecasts affect the supply
chain. The historical demand information was used to develop several autoregressive integrated
moving average (ARIMA) models by using BoxJenkins time series procedure and the adequate model
was selected according to four performance criteria: Akaike criterion, Schwarz Bayesian criterion,
maximum likelihood, and standard error. The selected model corresponded to the ARIMA (1, 0,
1) and it was validated by another historical demand information under the same conditions. The
results obtained prove that the model could be utilized to model and forecast the future demand
in this food manufacturing. These results will provide to managers of this man- ufacturing reliable
guidelines in making decisions.

PACS numbers:

I. INTRODUCTION

In today’s competitive manufacturing environment,
and to respond quickly to shifting demand, organizations
are moving toward a more effective demand-driven sup-
ply chain. The market has evolved into a pull environ-
ment with customers more demanding and discriminat-
ing, dictating to the supplier what products they desire
and when they need them delivered[1]

Demand forecasting is crucial to inventory manage-
ment. Inventory stock levels depend on demand’s fore-
casts. In fact, inaccurate estimation of demand can cause
significant costs to pay, which proves that the process is
not improved. Consequently, many systems incur large
investments in inventories to avoid stock outs. A further
complicating issue is that some demands can be inter-
mittent demands, which means that there is a time when
we have no demand and other time when we have suc-
cessive demands. Intermittent demands present many
difficulties for traditional statistical demand forecasting
methods

Generally, there are many approaches to forecast de-
mand among which we find the exponential smoothing,
for example. But, when applying these approaches, we
need to have historical data. In the beginning, there is
no information about the past, we use then an estimation
based on similar cases or engineer’s experiences. In this
case, we have a big amount of uncertainty which will be
avoided with time.

For most organizations, managing demand is challen-
ging because of the difficulty in forecasting future con-
sumer needs accurately. 1 More than 74 % of the re-
sponds in a research survey, shows the poor forecasting
accuracy and demand volatility as the increasing major
challenges to supply chain flexibility. 2 Best perform-
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ing companies tend to improve supply chain flexibility,
agility, and responsive ness through improving forecast-
ing accuracy throughout the long supply chain. 2 The
managers in these companies must link forecasting to im-
provement goals and use past performance to avoid past
errors and then reach a high level of efficiency.[3]

Researchers came out with much work in the forecast-
ing domain and suggested many methods among which
we find two principal approaches much utilized: time se-
ries approaches and artificial neural network (ANN) tech-
niques.

ANN models have been successfully involved in fore-
casting demand. These models are characterized by in-
tervals with considerable variation of demand. ANN ap-
proach is considered as an alternative when it comes to
the ability to capture the nonlinearity in data set.

ANN is applied in different fields. Gaafar and Choueiki
[4] applied a neural network model to a lot-sizing problem
as a part of material requirements planning for the case
of deter ministic time-varying demand.[5]

To compare ANN and ARIMA method and to assess
the performance of the two methods, a study related to
elec tricity demand has been done by Prybutok et al.[6]
to forecast a time series. ANN seems to be outperformed.
Another study was done by Ho et al. [7] using simulated
failure time of a compressor to determine the more ac-
curate forecasting model. The two methods are used to
forecast the failure of the system. [8]

Aburto and Weber [9] combined the two forecasting
methods which are ARIMA and neural networks. The
efficiency of the hybrid model is compared with tradi-
tional forecasting methods. [10]

This brief review of the literature shows that ANN is
a strength tool aiming at the modeling of any time se-
ries. Nevertheless, in our article, we will test the ARIMA
model at first to prove its ability to make accurate fore-
casts in the food company as a priori study.

In our article, we are interested the most in the time se-
ries approach: autoregressive integrated moving average
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(ARIMA) models, [11-14] multivariate transfer function
mod els, [11,15] dynamic models, [11] and generalized
autoregressive conditional heteroskedasticity (GARCH)
models [16] have also been proposed. Certainly, ARCH
and GARCH models are increasingly utilized and are
considered as important tools in the analysis of time se-
ries data, especially in the case of financial applications.
But, they are specifically dedicated to the analysis and
forecasting of volatility which is not our aim in this cur-
rent article.

In all sectors, demand forecasts are of great impor-
tance. Indeed, predicting the demand facilitates the de-
cision on the amount to produce and thus on the supply
of the raw material and inventory management. In our
case, we will work in a food company which requires more
than in other sectors-forecasts that are very reliable and
accurate as long as it will affect the production of perish-
able goods. Besides, products in a food company having
steady predictable demand need efficient supply chains
that shorten lead times and support limited inventory.

A robust supply chain management system requires the
presence of managers who are aware of the necessity of
collaboration between different functions: planning, pro-
curement, manufacturing, and logistics. Let’s take the
example of the collaboration of planning function with
suppliers. Over time, we feed our database to build a
history that will be used to make our forecasts. After de-
veloping our model, which is the purpose of our article,
we will easily have the planned application transmitted
to the planning function. The latter carries out its pro-
duction plan related to suppliers.

The aim is therefore to devise an optimal production
plan based on accurate forecasts to minimize the total
production cost composed by the procurement, process-
ing, storage, and distribution costs. Expected benefits
from these forecasts are reduced inventories, lower supply
chain costs, increased return on assets, greater customer
satisfaction, and reduced lead times. However, this opti-
mal production plan should meet different company con-
straints among others: production capacity, minimum
production lots, and so on.

We will be interested in the evolution by making fore-
casts of the demand in a Moroccan food company. To
achieve its objectives, the company must rely on pre-
cise forecasts. In this context, our article aims mainly to
study the demand to provide precise forecasts and to re-
spect the permissible error margin. The main idea is that
forecasting accuracy drives the performance of inventory
management.

The aim of the present study is the modeling and fore-
casting of demand by using Box-Jenkins time series ap-
proach, especially the ARIMA. To achieve this goal, we
used large and consistent historical demand data: from
January 2010 until December 2015. Several ARIMA
models were developed and evaluated by four perfor-
mance criteria: Akaike criterion (AIC), Schwarz Bayesian
criterion (SBC), maximum likelihood, and standard er-
ror. The adequate model was validated by new historical

demand data under the same conditions. In this arti-
cle, the second section presents a literature review about
demand forecasing studies. The third section is conse-
crated to the resultst and discussions of our case study.
Finally, the article concludes with a summary and the
future work.

II. LITERATURE REVIEW

A. Forecasting demand

In today’s organizations, which are subject to abrupt
and enormous changes that affect even the most estab-
lished of structures and where all requirements of busi-
ness sector need accurate and practical reading into fu-
ture, the fore- casts are becoming very crucial since they
are the sign of survival and the language of business in
the world. A fore- cast is a science of estimating the fu-
ture level of some variables. The variable is most often
demand, but it can also be something else, such as sup-
ply or price. 17 Forecast- ing is the operation of making
assumption about the future values of studied variables.
[18]

n manufacturing, forecasting demands is among the
most crucial issues in inventory management [19]; it can
be used in various operational planning activities during
the production process: capacity planning, used-product
acqui- sition management. [20]

For both types of supply chain processes “pusm/pull,”
the demand forecasts are considered the ground of sup-
ply chain’s planning. The pull processes in the supply
chain are realized with reference to customer demand,
while all push processes are realized in anticipation of
customer demand. [21] A company must take into consid-
eration such factors before selecting a suitable forecasting
methodology because the choice of a methodology is not
as simple as it seems. Fore- casting methods are cate-
gorized according to four types: qualitative, time series,
causal, and simulation. [21]

A time series is nothing but observations according to
the chronological order of time. [17] Time series forecast-
ing models use mathematical techniques that are based
on historical data to forecast demand. It is founded on
the hypothesis that the future is an expansion of the past;
that’s why we can definitely use historical data to fore-
cast future demand. [1]

Many studies about demand forecasting by time se-
ries analysis have been done in several domains. They
encircle demand forecasting for food product sales, [22]
tourism, [23] maintenance repair parts, [19,24] electric-
ity, [25,26] automobile, [27] and some other products and
services. [28,29,30]

By time series analysis, the forecasting accuracies de-
pend on the characteristics of time series of demand. If
the transition curves show stability and periodicity, we
will reach high forecasting accuracies, whereas we can’t
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expect high accuracies if the curves contain highly irreg-
ular patterns. [27]

B. Autoregressiveinte grated moving average

To model time series, we can work with the traditional
statistical models including moving average, exponential
smoothing, and ARIMA. These models are linear since
the uture values are cramped to be linear functions of
past data.

During the past few decades, researchers have been
focusing much on linear models since they had proved
simplicity in comprehension and application.

Time series forecasting models are mostly used to pre-
dict demand. Under an autoregressive moving average
hypothesis, Kurawarwala and Matsuo [31] calculated the
seasonal variation of demand by using historical data and
validated the models by examining the forecast perfor-
mance. [32] Miller and Williams mixed seasonal factors
in their model to improve forecasting accuracy, the sea-
sonal factors are calculated from multiplicative model.
Hyndman [33] widened Miller and Williams [32] work by
applying different relationships between trend and sea-
sonality under seasonal ARIMA hypothesis. The classi-
cal ARIMA approach becomes prohibitive, and in many
cases, it is impossible to determine a model, when sea-
sonal adjustment order is high or its diagnostics fail to
indicate that time series is stationary after seasonal ad-
justment. In such cases, the static parameters of the
classical ARIMA model are considered the principal con-
straint to forecasting high variable seasonal demand. An-
other constraint of the classical ARIMA approach is that
it requires a large number of observations to determine
the best fit model for a data series.

An ARIMA model is labeled as an ARIMA model (p,
d, q), wherein:
p is the number of autoregressive terms;
d is the number of differences; and
q is the number of moving averages.

The autoregressive process: Autoregressive models as-
sume that Yt is a linear function of the preceding values
and is given by equation (1)

Yt = α1Y
1
t + εt (1)

Literally, each observation consists of a random com-
ponent (random shock, ε) and a linear combination of
the previous observations. α1 in this equation is the sel-
fregression coefficient.

The integrated process: The behavior of the time se-
ries may be affected by the cumulative effect of some
processes. For example, stock status is constantly mod-
ified by consumption and supply, but the average level
of stocks is essentially dependent on the cumulative ef-
fect of the instantaneous changes over the period between

inventories. Although short-term stock values may fluc-
tuate with large contingencies around this average value,
the level of the series over the long term will remain un-
changed. A time series determined by the cumulative
effect of an activity belongs to the class of integrated
processes. Even if the behavior of a series is erratic, the
differences from one observation to the next can be rela-
tively low or even oscillate around a constant value for a
process observed at different time intervals. This station-
arity of the series of differences for an integrated process
is a crucial characteristic viewed from the statistical anal-
ysis side of the time series. Integrated processes are the
archetype of nonstation- ary series. A differentiation of
order 1 assumes that the difference between two succes-
sive values of Y is constant. An integrated process is
defined by equation (2)

Yt = Yt1 + εt (2)

where the random perturbation εt is a white noise.
The moving average process: The current value of a

moving averaging process is a linear combination of the
current disturbance with one or more previous perturba-
tions. The moving average order indicates the number of
previous periods embedded in the current value. Thus, a
moving average is defined by equation (3)

Yt = εtθε1 (3)

Box and Jenkins was founded on the contributions of
Yule [35] and Wold [36] to develop a practical approach
in order to perform ARIMA models. The Box-Jenkins
principle consists of three iterative steps of model iden-
tification, parameter estimation, and diagnostic checking
steps [37]. The principle rule to identify the model is that
if a time series is obtained from an ARIMA process, it
should have some theoretical autocorrelation properties.
By matching the theoretical and empirical autocorrela-
tion patterns, we make it possible to identify one or sev-
eral potential models for the given time series. Box and
Jenkins [34] proposed to use the autocorrelation function
(ACF) and the partial autocorrela- tion function (PACF)
of the sample data as the basic tools to identify the order
of the ARIMA model.

As far as the identification step is concerned, we should
produce a stationary time series, which is a required con-
dition to find the ARIMA model, so, we mostly need data
transformation. The statistical characteristics of a sta-
tionary time series such as the mean and the autocorrela-
tion structure are constant over time. We usually need to
apply differencing and power transformation to the data
to remove the trend and stabilize the variance before an
ARIMA model can be fitted.

After that, it becomes easy to calculate the model
para- meters and then specify the model. These param-
eters are estimated so that the overall error is reduced.
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Finally, we move to the diagnostic checking of model
adequacy. In this last step, we make sure that the hy-
pothesis we made about the errors are contended. The
diagnostic statistics and plots of residuals can be used
to assess the adequacy of future values to our data. If
the model is not adequate, we have to make other esti-
mation of parameters followed by the model validation.
Diagnostic information can help us come up with new
models.

Box?Jenkins model constitutes a process approach to
follow and repeat till reaching a high degree of satisfac-
tion about the model and having reduced errors. Con-
sequently, we can freely use this model to forecast our
variable.

Researchers approve that the estimation of parameters
requires a large number of observations. Consequently,
there are some limits for using ARIMA model. Never-
theless, once we apply ARIMA model, we reach a high
quality in the opposite of the time series models.

FIG. 1: Evolution of the final product’s sales.

III. RESULTS AND DISCUSSION

In this article, the demand forecasting of the final prod-
uct in a food manufacturing is conducted based on real
data,and the accuracy and characteristics are studied.
This study examines the effectiveness of demand fore-
casting in a food manufacturing.

Based on the Box-Jenkins approach, our study will be
carried out in three parts: identification, estimation, and
verification. The model shown in Figure 1 is based on the
demand of the final product in a Moroccan food manufac-
turing from January 2010 until December 2015.

A. Identification of model

In this step, we start with the initial preprocessing
of the data to make it stationary, and then we choose
possible values of p and q which we can of course adjust
as model fitting progresses.

For stationarity, the series shown in Figures 2 and 3,
respectively, fluctuates around an average value and its
ACF decays to zero fairly rapidly which proves the statio-
narity of the time series.

Moreover, to assess whether the data come from a
stationary process we can perform the unit root test:
Dickey-Fuller test for stationarity. After carrying out
the test on the Xlstat software, the results are grouped
in Table 1.
H0 : The series has a unit root. H1 : The series does

not have a unit root. The series is stationary.
Since the calculated p value is greater than the thresh-

old significance level α = 0.05, the null hypothesis H0

cannot be rejected. The risk of rejecting the null hy-
pothesis H0 while it is true is 84.38%.

FIG. 2: ACF correlograms of the demand series. ACF: auto-
correlation function.

In our case, and after verification of the stationarity
of the series, we notice from the ACF and PACF cor-
relograms that our model is not pure AR or pure MA.
We therefore tested several models to identify the most
suitable one for sales.
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shows whether the distribution of residues approximates a 
normal distribution. In our case, we have residues that dis- 
tribute relatively normal around zero and with a relatively 
low dispersion at a 5% risk. 

Figure 2. ACF correlograms of the demand series. 
ACF: autocorrelation function. 

The chosen model parameters are presented in Table 3. 
The developed model is given by equation (4) 

y ¼ δ þ α yt 1  θ ε þ ε ð4Þ t 1 1 
t 1 

t 

with: 

 
 

yt, y : sales of period t and t 1, respectively. t 1 

t 1 εt; ε : residuals of period t and t 1, and constitute 
a white nose. 
α , θ : coefficients of autoregressive and moving 

 1 

average processes, respectively. 
1 

From Table 3, we can extract the coefficients of auto- 
regressive and moving average processes. Therefore, equa- 
tion (4) becomes as follows 

Figure 3. PACF correlograms of the demand series. 
PACF: partial autocorrelation function. yt ¼ 125:524 þ 0:90792 yt 1  0:6388 εt 1 ð5Þ 

T a b l e 1 . T e s t r e s u l t s . 

A c c u r a c y o f A R I M A ( 1 , 0 , 1 ) m o d e l τ (observed value) 
τ (critical value) 
p Value (unilateral) 
α 

 1.350 
 0.717 
 0.844 

The accuracy of the developed model was evaluated by 
comparing the experimental and the simulated sales in the 
same period. Figure 4 reports this comparison and reveals 
that the selected model has a high accuracy and ability to 
simulate the dynamic behavior of sales. Therefore, this 
model can be used to analyze and model the demand in 

0.05 

E s t i m a t i o n o f m o d e l ’ s c o e f f i c i e n t s 
The ARIMA procedure of the SPSS time series module38 

this food manufacturing. 

allows estimating the coefficients of the models that we From the graph, we notice that the model is validated 
have previously identified by providing the parameters p, since the predicted demand fluctuates around the fit. We 
q, and d, using a fast maximum likelihood estimation also note that the predicted demand stayed between the 
algorithm.39–42 

The execution of the procedure adds new time series 
upper limit and the lower limit. 

We can see that the error variates but it is among the 
representing the values adjusted or predicted by the tolerance interval. In order to minimize this error, we pro- 
model, residuals (adjustment errors) and confidence pose a new approach in our future work. 

Estimation of model’s coefficients: The ARIMA proce-
dure of the SPSS time series module [38] allows estimat-
ing the coefficients of the models that we have previously
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FIG. 3: PACF correlograms of the demand series. PACF:
partial autocorrelation function.

identified by providing the parameters p, q, and d, using
a fast maximum likelihood estimation algorithm. [39-42]

The execution of the procedure adds new time se-
ries representing the values adjusted or predicted by the
model, residuals (adjustment errors) and confidence in-
tervals of the adjustment at a 95% confidence level. The
best model is as simple as possible and minimizes certain
criteria, namely AIC, SBC, variance and maxi- mum like-
lihood. [43-45] The chosen model is that of ARIMA (0, 1,
1). For the other models, either Student ?T-RATI?? test
values are found in the range ±1.96, or one of the values
of the minimization criteria is higher than that found for
the ARIMA model (1, 0, 1) with the constant value.

Table 2 summarizes the values of the different mod-
els and proves the choice of the model on which we will
base our predictions. It is clear from Table 2 that the
ARIMA model (1, 0, 1) is selected because all the coef-
ficients are significantly different from 0 according to the
Student test (—T-RATIO— 1, 96) with an acceptable
level of adjustment.

The model residue is stationary and follows a white
noise process in the range of ±40. The residue histogram
shows whether the distribution of residues approximates
a normal distribution. In our case, we have residues that
dis- tribute relatively normal around zero and with a rel-
atively low dispersion at a 5% risk. The chosen model pa-
rameters are presented in Table 3. The developed model
is given by equation (4)

yt = δ + α1yt1θε
1
t1 + εt (4)

with:
yt, yt1 : sales of period t and t1, respectively. εt; εt1 :

residuals of period t and t1, and constitute a white nose.
α1 , θ1 : coefficients of autoregressive and moving average
processes, respectively.

From Table 3, we can extract the coefficients of auto-
regressive and moving average processes. Therefore,
equa- tion (4) becomes as follows

yt = 125.524 + 0.90792yt10.6388εt1 (5)

B. Accuracy of ARIMA ( 1 , 0 , 1 ) model

The accuracy of the developed model was evaluated
by comparing the experimental and the simulated sales
in the same period. Figure 4 reports this comparison
and reveals that the selected model has a high accuracy
and ability to simulate the dynamic behavior of sales.
Therefore, this model can be used to analyze and model
the demand in this food manufacturing.

From the graph, we notice that the model is validated
since the predicted demand fluctuates around the fit. We
also note that the predicted demand stayed between the
upper limit and the lower limit.

We can see that the error variates but it is among the
tolerance interval. In order to minimize this error, we
pro- pose a new approach in our future work.

C. Forecast

After we have defined the most appropriate model of
demand in our case, we have to make the forecasting; to
do this and so to predict trends and develop forecast, we
used the IBM SPSS Forecasting. Table 4 and Figure 5
present the results of the sales forecasts that we obtained
by applying our model ARIMA (1, 0, 1) for the next 10
months from January 2016 to October 2016.

We can clearly see that the model chosen can be used
for modeling and forecasting the future demand in this
food manufacturing, but each time we need to feed the
historical data with the new data to enrich it in order to
improve the new model and forecasting.

The forecasts obtained after modeling facilitated the
decision on the production in this food company. In fact,
the model enabled us to forecast the demand and make
accurate predictions. Once we obtain a demand forecast,
it will be much easier end very clear to make the right
production planning and thus eliminate big cost losses.
That will help us take right decisions related to supply-
ing raw materials and determination of daily production.
Moreover, that will affect the whole production process
eliminating then any kind of loss.

IV. CONCLUSION

Demand forecasting is an important function of man-
aging supply chain. Its integration with other business
functions makes it one of the most important planning
processes business can deploy for future. In this context,
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T a b l e 2 . C o e f f i c i e n t s o f d i f f e r e n t m o d e l s . 

Models ARIMA (1, 0, 1) 
without 
constant Characteristics ARIMA (1, 0, 2) ARIMA (2, 0, 2) ARIMA (1, 0, 1) ARIMA (1, 0, 0) ARIMA (0, 0, 1) 

AR (1) α1 
SEB 
T value 
p Value 
θ1 

0.92913 0.71371 
0.761758 
0.9369292 
0.35216008 
0.31779 

0.90792 0.49434 
 0.41704 
0.1119989 

 3.723567 
0.00039384 

0.99755623 
0.00444769 

224.28617 
0.0000000 
0.71392452 
0.08579173 
8.32160 

0.104616 
8.8813204 
0.00000000 
0.52269 
0.167073 
3.1284995 
0.00258711 

0.094852 
9.571955 
0.00000000 
0.63880 
0.161531 
3.954655 
0.00018319 

0.1074471 
4.600820 
0.00001823 

MA (1) 

AR (2) 

SEB 0.741595 
T value 
p Value 
α2 

0.4285186 
0.66964815 
0.19759 

0.0000000 

SEB 0.659442 
T value 
p Value 
θ2 

0.2996279 
0.76538859 
0.30202 MA (2) 

Constant 

0.17062 
0.142258 SEB 0.409353 

T value 
p Value 
Cte 
SEB 
T value 
p Value 

1.1993429 
0.23455708 

124.42969 
12.608189 
9.8689581 
0.00000000 

688.86593 
697.9726 

0.7377864 
0.46322050 

124.52640 
12.601296 
9.8820312 
0.00000000 

690.82312 
702.20645 

 340.41156 
28.221721 

125.53260 
11.785537 
10.651411 
0.00000000 

688.77347 
695.60347 

 341.38674 
28.214812 

128.53887 
6.5715235 
19.559981 
0.00000000 

689.37103 
693.92437 

 342.68552 
28.576249 

129.22650 
4.8971088 
26.388326 
0.00000000 

693.59055 
698.14388 

 344.79527 
29.443759 

AIC 
SBC 

692.04831 
696.60164 

 344.02415 
28.461048 

Log likelihood 
Error 

 340.43297 
28.034898 

SBC: Schwarz Bayesian criterion; AIC: Akaike criterion; ARIMA: autoregressive integrated moving average; SEB: Standard Error of B (B: Regression 
Coefficient). 

T a b l e 3 . A R I M A m o d e l p a r a m e t e r s . 

Estimate 

125.524 

SE t Sig. 

Sales (tons)-Model_1 No transformation Constant 12.466 10.069 0.000 

AR 
MA 

Lag 1 
Lag 1 

0.908 
0.639 

0.095 
0.162 

9.537 
3.938 

0.000 
0.000 

ARIMA: autoregressive integrated moving average. 

F i g u r e 4 . S a l e s , f i t , L C L , a n d U C L . L C L : l o w e r c o n t r o l l i m i t ; U C L : u p p e r c o n t r o l l i m i t . 

  
  

6 

T a b l e 2 . C o e f f i c i e n t s o f d i f f e r e n t m o d e l s . 

Models ARIMA (1, 0, 1) 
without 
constant Characteristics ARIMA (1, 0, 2) ARIMA (2, 0, 2) ARIMA (1, 0, 1) ARIMA (1, 0, 0) ARIMA (0, 0, 1) 

AR (1) α1 
SEB 
T value 
p Value 
θ1 

0.92913 0.71371 
0.761758 
0.9369292 
0.35216008 
0.31779 

0.90792 0.49434 
 0.41704 
0.1119989 

 3.723567 
0.00039384 

0.99755623 
0.00444769 

224.28617 
0.0000000 
0.71392452 
0.08579173 
8.32160 

0.104616 
8.8813204 
0.00000000 
0.52269 
0.167073 
3.1284995 
0.00258711 

0.094852 
9.571955 
0.00000000 
0.63880 
0.161531 
3.954655 
0.00018319 

0.1074471 
4.600820 
0.00001823 

MA (1) 

AR (2) 

SEB 0.741595 
T value 
p Value 
α2 

0.4285186 
0.66964815 
0.19759 

0.0000000 

SEB 0.659442 
T value 
p Value 
θ2 

0.2996279 
0.76538859 
0.30202 MA (2) 

Constant 

0.17062 
0.142258 SEB 0.409353 

T value 
p Value 
Cte 
SEB 
T value 
p Value 

1.1993429 
0.23455708 

124.42969 
12.608189 
9.8689581 
0.00000000 

688.86593 
697.9726 

0.7377864 
0.46322050 

124.52640 
12.601296 
9.8820312 
0.00000000 

690.82312 
702.20645 

 340.41156 
28.221721 

125.53260 
11.785537 
10.651411 
0.00000000 

688.77347 
695.60347 

 341.38674 
28.214812 

128.53887 
6.5715235 
19.559981 
0.00000000 

689.37103 
693.92437 

 342.68552 
28.576249 

129.22650 
4.8971088 
26.388326 
0.00000000 

693.59055 
698.14388 

 344.79527 
29.443759 

AIC 
SBC 

692.04831 
696.60164 

 344.02415 
28.461048 

Log likelihood 
Error 

 340.43297 
28.034898 

SBC: Schwarz Bayesian criterion; AIC: Akaike criterion; ARIMA: autoregressive integrated moving average; SEB: Standard Error of B (B: Regression 
Coefficient). 

T a b l e 3 . A R I M A m o d e l p a r a m e t e r s . 

Estimate 

125.524 

SE t Sig. 

Sales (tons)-Model_1 No transformation Constant 12.466 10.069 0.000 

AR 
MA 

Lag 1 
Lag 1 

0.908 
0.639 

0.095 
0.162 

9.537 
3.938 

0.000 
0.000 

ARIMA: autoregressive integrated moving average. 

F i g u r e 4 . S a l e s , f i t , L C L , a n d U C L . L C L : l o w e r c o n t r o l l i m i t ; U C L : u p p e r c o n t r o l l i m i t . 

FIG. 4: Sales, fit, LCL, and UCL LCL: lower contrl limit: UCL: upper control limit
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T a b l e 4 . F o r e c a s t s a l e s f r o m J a n u a r y 2 0 1 6 t o O c t o b e r 2 0 1 6 . 

Model 73 74 75 76 77 78 79 80 81 82 

Sales-Model_1 Forecast 
UCL 
LCL 

95.12 
151.41 
38.83 

97.92 
156.21 
39.63 

100.46 
160.35 
40.57 

102.77 
163.95 
41.59 

104.86 
167.08 
42.64 

106.77 
169.83 
43.70 

108.49 
172.25 
44.74 

110.06 
174.38 
45.75 

111.49 
176.26 
46.71 

112.78 
177.93 
47.63 

LCL: lower control limit; UCL: upper control limit. 

. 

F o r e c a s t Conclusion 

After we have defined the most appropriate model of Demand forecasting is an important function of managing 
demand in our case, we have to make the forecasting; to supply chain. Its integration with other business functions 
do this and so to predict trends and develop forecast, we makes it one of the most important planning processes 
used the IBM SPSS Forecasting. Table 4 and business can deploy for future. In this context, we devel- 
Figure 5 present the results of the sales forecasts that we oped an ARIMA model to model the demand forecasting of 
obtained by applying our model ARIMA (1, 0, 1) for the the finished product in a food manufacturing by using Box– 
next 10 months from January 2016 to October 2016. Jenkins time series approach. The historical demand data 

We can clearly see that the model chosen can be used for were used to develop several models and the adequate one 
modeling and forecasting the future demand in this food was selected according to four performance criteria: SBC, 
manufacturing, but each time we need to feed the historical AIC, standard error, and maximum likelihood. The model 
data with the new data to enrich it in order to improve the that we selected and which minimizes the four previous 
new model and forecasting. criteria is ARIMA (1, 0, 1). The results obtained proves 

The forecasts obtained after modeling facilitated the that this model can be used for modeling and forecasting 
decision on the production in this food company. In fact, the future demand in this food manufacturing; these results 
the model enabled us to forecast the demand and make will provide to managers of this manufacturing reliable 
accurate predictions. Once we obtain a demand forecast, guidelines in making decisions. As future work, we will 
it will be much easier end very clear to make the right develop other models by using a combination of qualitative 
production planning and thus eliminate big cost losses. and quantitative techniques to generate reliable forecasts 
That will help us take right decisions related to supplying and increase the forecast accuracy. We will also try neural 
raw materials and determination of daily production. More- network approach to compare it with ARIMA’s results in 
over, that will affect the whole production process elimi- order to confirm the ANN’s strength in the food company. 

nating then any kind of loss. Furthermore, we will make an ARIMA-radial basis 

we developed an ARIMA model to model the demand
forecasting of the finished product in a food manufactur-
ing by using Box-Jenkins time series approach. The his-
torical demand data were used to develop several models
and the adequate one was selected according to four per-
formance criteria: SBC, AIC, standard error, and maxi-
mum likelihood. The model that we selected and which
minimizes the four previous criteria is ARIMA (1, 0, 1).
The results obtained proves that this model can be used
for modeling and forecasting the future demand in this
food manufacturing; these results will provide to man-

agers of this manufacturing reliable guidelines in making
decisions. As future work, we will develop other models
by using a combination of qualitative and quantitative
techniques to generate reliable forecasts and increase the
forecast accuracy. We will also try neural network ap-
proach to compare it with ARIMA’s results in order to
confirm the ANN’s strength in the food company.

Furthermore, we will make an ARIMA-radial basis
function (RBF) combination always to achieve the same
goal: high accuracy.
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