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In this paper we develops a comparison crossover for Modified genetic algorithm (MGA) to solve
a NP hard optimization problem. Here we consider a set of markets, a depot and some products for
each of which a positive demand is specified. Each product is made available in a subset of markets
in each of which only a given quantity, less than or equal to the required one, can be purchased at a
given unit price. Here, this Traveling purchaser problem (TPP) searches for a cycle starting at and
ending to the depot and visiting a subset of markets at a minimum traveling cost, also we introduce
different vehicle to visit different markets say solid TPP (STPP). The effectiveness of our model are
illustrated by numerical examples.

PACS numbers:

I. INTRODUCTION

The TSP (Traveling salesman problem) was first for-
mulated as a mathematical problem in 1930 and became
increasingly popular after 1950. TSP is a well-known
NP-hard combinatorial optimization problem. Now, the
traveling purchaser problem is an emerging concept in
this area. In the traveling purchaser problem an agent
must visit a set of outlets in-order to satisfy a mini-
mum cost, demand requirement for the products. The
cost is made up of two elements: travel cost and pur-
chase cost. This problem is frequently faced by shoppers
but its also has applications in the area of production
scheduling and planning. An interesting generalization
of the well-known traveling salesman problem (TSP) is
the traveling purchaser problem (TPP) first introduced
by Ramesh [1981]. The undirected version of this prob-
lem can be stated as follows. Consider a domicile denoted
by 0, a set of markets denoted by M={1,2,........,m }, a
travel cost cij on each edge (i,j) linking two markets, and
a set K={1,2,........,n} of products. Denote by Mk the
set of markets selling product k and by pik the price of
product k at the market i. In what follows, cij must be
interpreted as cji whenever i>j. The TPP is to construct
a tour through a subset of the m markets and the domi-
cile and to purchase each of the n products at one of these
markets so as to minimize the sum of the travel and pur-
chase costs. Under Ramesh’s definition, it is implicitly
assumed that if a product is available at a given mar-
ket, its quantity is sufficient to satisfy the demand. This
version of the problem is called uncapacitated traveling
purchaser problem (UTPP). Laptore et. al [1987] have
solved a generalization of the UTPP where the demand
for product k is dk, and the availability qki of product
k at market i may be < dk. This version is called the
capacitated traveling salesman (CTPP).
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The most common TPP applications occur in vehi-
cle routing and warehousing (Singh et. al. [1997]). An-
other application in the field of production scheduling is
also described by Buzacott and Dutta [1971 ]. Here, a
multi-purpose machine can assume several configurations
i and each task k ∈K must be performed using a config-
uration in a set Mk. Here, we consider different vehicle
l={1, 2...p} to travel markets.

The TPP is NP-hard since it reduces to the TSP
if each product is available only at one market and each
market sells only one product. Now-a-days impreciseness
plays a important role from our all aspects. Sometimes
due to the lack of statistical data, probability theory does
not work here. As a breakthrough to deal with non de-
terministic phenomena, especially expert data and sub-
jective estimation, an uncertainty theory was founded by
Liu[2007 ] and subsequently studied by many researchers.

SC is a term originally coined by Zadeh [1994, 1998].
A Genetic Algorithm (GA) is an optimization technique
that is based on the evolution theory. It performs a ran-
dom search having both exploitation and exploration.
The first thing we must do in order to use a GA is to
automatically build a set of solutions to the problem. In
a TSP, every route that passes through all the cities is
potentially a solution, although probably not the opti-
mal one. Such randomly generated routes act as initial
population of solutions for GA.

Many kinds of GA developed by the researchers such
as Niched Pareto GA, Hybrid GA (HGA), Adaptive GA
(AGA), etc, are available to get the optimal solutions in
different research areas.

In the existing literature, many optimization meth-
ods, such as Simulated Annealing (SA) (Chiang & Rus-
sell1997), Tabu Search (TS) (Knoxl, 1989), Ant Colony
System (ACS) (Bianchi, Dorigo & Gambardella, 2002),
Genetic Algorithm (GA) (Holland, 1975), and Parti-
cle Swarm Optimization (PSO) (Eberhart & Kennedy,
1995); Marinakis & Marinakii, 2010) etc are used for TSP
problems.

In this paper comparison crossover is used to solve
the above model. Also probabilistic selection and conven-
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tional random mutation are consider for proposed MGA.
A comparison crossover based Modified genetic algorithm
(MGA) is developed with and presented here to solve
this TPP. The model is illustrated by numerical exam-
ples. This paper is organized as follows: in Section-1,
a brief introduction is given. In Section-2, MGA is pre-
sented. Now section-3 illustrate the solid TPP model. In
Section-4 numerical experiments are performed. Finally
we conclude the paper with conclusion in Section-5.

II. MODIFIED GENETIC ALGORITHM

Here we proposed GA using the probabilistic selection
(Boltzmann Probability), nature based crossover and
random mutation, among a set of potential solutions to
get a new set of solutions. As usual, it is continued until
terminating conditions are encountered. The proposed
MGA and its procedures are presented below
i. Representation: Here a complete tour on Mk

markets among M markets represents a solution. So an
Mk dimensional integer vector Xi = (xi1,xi2, ..., xiMk)
is used to represent a solution, where xi1, xi2, ..., xiMk

represent Mk consecutive markets in a tour. Population
size number of such solutions Xi = (xi1, xi2, ..., xiMk),
i = 1, 2, ..., N, are randomly generated by random
number generator. Here N represents the number of
chromosomes (solutions).
ii. Probabilistic Selection:

a. Probability of Selection Parameter (ps):
Here we introduce a predefined value say probability
of selection parameter (ps). For each solution of f(Xi),
generate a random number r from the range [0,1]. If
r < ps then the corresponding chromosome is stored at
matting pool.

b. Boltzmann-Probability:
For minimum cost objective, it is better to choose that
population which is in the neighborhood of the minimum
solution of the entire solution space. So we get the
convergence rate much high. From the initial population,
choose the best fitted population for TPP. It is chosen
as most minimum fitness value (say fmin). To form the
matting pool, we use the Boltzmann-Probability of
the each chromosome from the initial population.

Here pB=e((fmin−f(Xi))/T ), T=T0(1-a)k,
k=(1+100*(g/G)), g=current generation number,
G= maximum generation, T0= rand[5,100], a=rand[0,1],
f(Xi) means the chromosome corresponding to Xi,
i=chromosome number.
iii. Comparison Crossover:

Pseudo code of Comparison Crossover:

input: Matting Pool, pc, Total number of node (N).
output: Offspring (child).
begin

for ( j=1; j<=N; j++) // N= total number of

nodes.
if (c (ai, a1) < c (ai, s1)) // i ∈ {1, 2, ..., N},

c (ai, a1) is the cost between nodes ai and a1
{

if (a1 exist in Ch1)
{

j++;
compare next node from Pr1;

}
else
{

concatenate a1 in Ch1;
j++;

}
}

else
{
if (s1 exist in Ch1)

{
j++;
compare next node from Pr2;

}
else
{

concatenate s1 in Ch1;
j++;

}
}

end for
end

During every comparison, concatenate a node such that
the travel path satisfies the TSP conditions. Firstly in
every comparison, check if the node already exists in the
child, then the cost of the next node in modified parents
will be considered i.e. repetition of the nodes are not
allowed. Secondly comparison will occur until every
node of the modified parents are checked i.e. every node
must exist in the child.
(iv). pm dependent Random Mutation:

a. Selection for mutation: For each solution of
p(t), generate a random number r from the range [0,1].
If r < pm then the solution is taken for mutation.

b. Mutation process: At first determined the
total number of mutated node (T). To mutate a solution
X = (x1, x2, ..., xN ), number of mutated node T= pm*
N, N=total number of nodes.

c. Pseudo code of Mutation:

input: pop size, (pm) and total number of nodes
(N).

output: Mutated offspring (child).
begin
Determine T= pm*N // total number of mutated node

for i=0 to pop size
r=rand(0,1)
if( r< pm){

Select chromosome depending pm
for j=1 to T
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Randomly select two different nodes
between [1,N];

Swap the nodes;
end for
}

end for
end

Procedure of MGA:

procedure name: Modified Genetic Algorithm
(MGA).
input: Max Gen (S0), Population Size (pop−size),
Probability of Selection (ps), Probability of Crossover
(pc), Probability of Mutation (pm), Problem Data (cost
matrix).
output: The optimum and near optimum solutions.
1. Start
2. Set initial generation t ← 0.
3. (Initialization) Randomly generate initial population
p(t) where Xi, i=1,2...,pop−size are the chromosomes,
N numbers of node in each chromosome represent a
solution/path of the TSP.
4. Evaluate the fitness of each solution of the initial
population p(t).
5. Check the condition while (t≤ S0) do upto step 21.
6. Update the generation t ← t+1.
7. Selection Procedure.
8. Determine the Boltzmann Probability (pB) of each
chromosome of p(t)
9. Create the matting pool based on ps and pB .
10. Crossover Procedure.
11. Select the parents using pc from matting pool.
12. According to Subsection 2(iii) perform the crossover
operation
13. Modified the parents.
14. Generate off springs and replace the parents.
15. Repeat the Step 11 to Step 14 depend on pc.
16. Mutation Procedure done according the Subsection
2(iv).
17. Select the off springs for mutation based on pm.
18. Exchange the place of these nodes;
19. Store the new off springs into offspring set.
20. Compare the fitness and Store the local optimum
and near optimum.
21. Repeat the Step 5 to Step 21.
22. (Optimum Solution) Store the optimum and near
optimum results.
23. Stop.

III. PROPOSED SOLID TPP (STPP)

A. Classical TPP(2DTPP)

Now, TSP is a very well known problem. As for the
TSP, a TPP modeled on a directed graph, where the cost

cij is potentially different from cji, is named asymmetric
(ATPP). Otherwise, if cij=cji for each arc (i,j) ∈ A, the
problem is called symmetric TPP (STPP). In the litera-
ture, ATPP and STPP are often referred to as directed
and undirected TPP, respectively. Another common clas-
sification concerns the availability of products at the sup-
pliers. If the available quantity of a product k ∈ K in a
supplier i ∈Mk is defined as a finite value qik, potentially
smaller than product demand dk, then the TPP is called
is called restricted (R-TPP). The unrestricted TPP(U-
TPP), instead considers the case in which supplies are
unlimited, i.e., where qik ≥ dk, k ∈ K, i ∈ Mk. Note
that U-TPP represents a special case of R-TPP, since
having unlimited supplies is equivalent to consider dk=1
and qik=1, ∀k ∈ K and ∀i ∈ Mk. Many papers refer
to R-TPP, and U-TPP as capacitated and uncapacitated
TPP, respectively.

1. Symmetric TPP

The symmetric TPP is defined over a com-
plete undirected graph GU = (V,E), where
E := {e = (i, j) : i, j ∈ V, i < j} is the edge set
and a traveling cost ce is associated with each edge
e ∈ E. Let xe, e ∈ E, be a binary variable taking
value 1 if edge e is crossed, and 0 otherwise. Let also
δ(V

′
) := {(i, j) ∈ E : i ∈ V ′

, j ∈ V/V ′} for any subset

V
′

of nodes. Then, the Symmetric TPP can be defined
as follows:

(Symmetric TPP) Minimize

∑
e∈E,l∈L

cexe +
∑
k∈K

∑
i∈Mk

pikzik, L = 1, 2, ......., P (1)

subject to
∑
i∈Mk

zik = Dk, k ∈ K (2)

∑
e∈δ({h})

xe = 2yh h ∈M (3)

∑
e∈δ(M ′ )

xe ≥ 2yh M
′ ⊆M h ∈M ′

(4)

xe ∈ {0, 1} e ∈ E (5)

yi ∈ {0, 1} i ∈M (6)

zik ≥ 0, k ∈ K, i ∈Mk (7)

Objective function (1) aims at the joint minimization
of the traveling and purchasing costs. Equation (2) en-
sure that each product demand is satisfied exactly. Con-
straint (3) and (4) rule the visiting tour feasibility. Con-
straints (5) - (7) impose binary and non-negative condi-
tions on variables. No integrality conditions are required
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for z-variables, even if they actually represent the num-
ber of units purchased for each product in each supplier.
If all input data are integer, in fact, then an optimal
solution where all z-variables have integer values always
exists.
Due to the use of an undirected graph, now in the de-
gree constraints (3), two edges must be incident to each
subset of suppliers containing a visited one. Note that
this Symmetric TPP formulation does not follow solu-
tions with less than three vertices, one being the depot.
Two-vertex cycles containing the depot and one market
can be easily generated and compared to the optimal so-
lution given by the model.

B. Solid TPP (STPP)

In this section we present a solid traveling purchaser
problem (STPP). In this paper, we first consider
a STPP in two variables ie. traveling cost cel and
purchasing cost pik, the price of product k at mar-
ket i. Here, cel be the cost of traveling from i-th
market to j-th market {e = (i, j)} using l-th type of
conveyance, L = {l : 1, 2, ........, P}. Let yi, i ∈ M ,
be a binary variable taking value 1 if supplier i is
selected, and 0 otherwise. Here The STPP is defined
over a complete undirected graph GU = (V,E), where
E := {e = (i, j) : i, j ∈ V, i < j} is the edge set
and a traveling cost ce is associated with each edge
e ∈ E. Let xe, e ∈ E, be a binary variable taking
value 1 if edge e is crossed, and 0 otherwise. Let also
δ(V

′
) := {(i, j) ∈ E : i ∈ V ′

, j ∈ V/V ′
for any subset V

′

of nodes. Then, the STPP can be defined as follows:

(SGTPP) Minimize∑
e∈E,l∈L

celxe +
∑
k∈K

∑
i∈Mk

pikzik, L = 1, 2, ......., P (8)

∑
i∈Mk

zik = Dk, k ∈ K (9)

∑
e∈δ({h})

xe = 2yh h ∈M (10)

∑
e∈δ(M ′ )

xe ≥ 2yh M
′ ⊆M,h ∈M ′

(11)

xe ∈ {0, 1} e ∈ E (12)

yi ∈ {0, 1} i ∈M (13)

zik ≥ 0, k ∈ K, i ∈Mk (14)

Objective function (8) aims at the joint minimization
of the traveling and purchasing costs. Equation (9) en-
sure that each product demand is satisfied exactly. Con-
straints (13) and (14) rule the visiting tour feasibility.
Constraints (13) to (14) impose binary and non-negative
conditions on variables.

IV. NUMERICAL EXPERIMENTS

A. Testing for proposed GA

The performance of the proposed algorithm MGA
was found for 8 standard benchmarks using TSPLIB
[1995]. Table 1 gives the results of MGA. The results are
compared in terms of total cost. Under 25 independent
run, the average results, best found results are presented
here. We assume that each product must be available at
the probability equal to 70% to be sold at a market, that
is we build a tour from the TSPLIB by choosing 70%
cities (markets).

Table 1: Results for TPP of single product with
standard TSP data

No. of No. of Unit cost Average Best
Instances markets units Unit cost Result Result

visit purchased Unit cost
bayg29 20 101 31 4593 4500
bays29 20 105 31 5050 4991
gr21 14 71 31 3722 3679
gr17 11 57 31 2608 2598
gr48 33 167 31 11035 10811

ulysses16 11 57 31 4632 4632
swiss42 29 147 31 6276 6240
brazil58 40 147 31 26899 23298

The parameters of the MGA are set as in Table 2 for
different nodes of the TSP. As the size of the TSP in-
creases popsize, Maxgen, maximum initialization, num-
ber of initialization for convergence of the optimal solu-
tion.

Table 2: Parameters for MGA and simple GA
Size (N) Maxgen Number of Maximum Pop pc pm

Initialization Initialization -size
N≤ 20 200 80 120 30 .45 0.35

20< N ≤ 30 300 120 180 50 .45 0.3
30< N ≤ 40 400 200 300 80 .51 0.35
40< N ≤ 50 500 200 400 100 .51 0.4
40< N ≤ 60 600 250 450 100 .51 0.45

Table 3: Re-
sults of 2-dimensional TPP in Crisp Environment
Algorithm Path Total Cost Total units

3-1-5-7-2-4-6 1489 35
6-8-9-1-2-3-10 1482 35

MGA 4-5-1-7-9-2-8 1481 35
7-4-2-6-1-3-9 1490 35
6-10-7-5-8-6-1 1483 35
2-1-7-4-3-5-6 1495 35
4-8-3-5-1-10-4 1494 35

GA 10-4-2-8-5-9-1 1498 35
6-1-4-9-2-8-10 1493 35
3-10-5-6-1-7-8 1496 35
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Table 4: Input Data: Crisp STPP
Crisp Cost Matrix(10*10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10

1 ∞ (27,28,23) (28,29,32) (50,52,45) (23,25,26) (15,16,17) (35,39,33) (34,33,38) (49,38,45) (37,35,43)

2 (28,29,24) ∞ (22,29,27) (28,32,30) (35,31,39) (42,46,41) (33,36,35) (40,42,39) (25,28,24) (15,17,16)

3 (45,43,48) (30,27,28) ∞ (41,39,37) (28,22,29) (39,28,34) (30,29,23) (33,32,35) (39,40,41) (27,38,34)

4 (29,27,28) (32,35,37) (18,17,19) ∞ (30,29,23) (35,22,29) (33,30,29) (31,35,36) (27,28,29) (36,39,25)

5 (36,57,39) (22,25,12) (36,29,31) (29,30,25) ∞ (25,24,22) (27,25,29) (35,34,29) (18,19,16) (21,29,23)

6 (28,22,26) (34,29,29) (28,26,28) (18,19,17) (38,29,34) ∞ (35,33,37) (43,45,43) (39,37,36) (33,30,31)

7 (28,26,25) (37,25,29) (30,32,33) (25,20,29) (43, 37,45) (40,45,36) ∞ (19,18,17) (35,25,21) (25,22,19)

8 (24,26,17) (18,15,19) (30,35,31) (36,33,39) (35,29,28) (25,26,27) (41,36,25) ∞ (22,26,19) (36,29,26)

9 (35,32,34) (38,37,40) (34,36,33) (25,26,27) (20,22,12) (20,18,21) (31,25,28) (32,33,36) ∞ (27,28,25)

10 (27,26,32) (34,35,33) (27,28,29) (22,24,17) (15,16,14) (32,35,33) (27,16,19) (42,43,50) (37,27,23) ∞

Table 5: Results of 3-dimensional STPP in Crisp Environment
Algorithm Path(Vehicle) Total Cost Total units

9(1)-4(2)-10(3)-5(2)-1(2)-2(2)-7(1) 1512 35
8(2)-6(2)-9(2)-3(1)-2(2)-5(3)-7(2) 1509 35

MGA 5(1)-3(3)-1(3)-10(2)-9(2)-7(2)-2(1) 1498 35
4(1)-9(3)-2(2)-10(3)-3(2)-7(3)-6(3) 1502 35
4(1)-5(2)-3(1)-6(3)-10(2)-9(1)-7(2) 1525 35
5(1)-3(2)-6(1)-8(3)-4(1)-2(1)-1(2) 1536 35
5(1)-10(1)-2(3)-3(1)-7(1)-4(2)-8(1) 1554 35

GA 9(2)-5(2)-10(2)-7(1)-1(1)-3(3)-6(1) 1530 35
8(1)-2(1)-6(1)-7(2)-9(1)-5(1)-3(3) 1595 35
4(2)-5(1)-6(3)-10(2)-5(1)-3(2)-7(3) 1606 35

B. STPP in Crisp Environment

Now for a 3DTPP, where we consider three types of
conveyances. The cost matrix for the 3DTPP is repre-
sented in Table 4.

For the above results, we consider maximum genera-
tion=1000. The problem is solved by MGA and simple
GA the results are presented in Table 3 and here we con-
sider first vehicle type through out the tour.
For the above results, we consider maximum genera-
tion=1000. The problem is solved by MGA and simple
GA the results are presented in Table 5.

V. CONCLUSION

In this paper, a virgin comparison crossover for GA
is proposed to solve an solid travelling purchaser prob-

lem. The proposed GA is tested with standard TSPLIB
instances with considering maximum markets/supplier of
the problem. The Solid TPP is introduced in the area
of TPPs and regarded as highly NP-hard combinatorial
optimization problems. Such STPP are here formulated
in crisp costs and solved by the proposed GA. In future
STPP with time window may consider. Here, develop-
ment of GA is in general form and it can be applied
in other discrete problems such as network optimization,
graph theory, solid transportation problems, vehicle rout-
ing, VLSI chip design, etc. Again STPP can be used in
production planning, equipment purchasing for multi na-
tional company project and many practical problem can
be model solved.
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